Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 10829-10840, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570946

RESUMO

Imaging of electronic device surface or sub-surface electromagnetic fields under operating conditions is important for device design and diagnosis. In this study, we proposed a method to characterize specific magnetic field properties of electromagnetic devices at micron-scale using a solid-state quantum sensor, namely diamond nitrogen-vacancy (NV) centers. By employing a wide-field magnetic field measurement technique based on NV centers, we rapidly obtain the first-order magnetic field distribution of anomalous regions. Furthermore, we approximate the second-order magnetic field (magnetic gradient tensor) using the differential gradient method. To visualize the electromagnetic anomalous regions boundary, we utilize the tensor invariants of the magnetic gradient tensor components, along with their nonlinear combinations. The identification error rate of the anomalous regions is within 12.5%. Additionally, the electromagnetic field of anomalous regions is simulated showing the measurement accuracy. Our study shows that the experimental results are very similar to the theoretical simulation of the electromagnetic field (error: 7%). This work is essential for advancing electromagnetic field characterization of electronic devices and the advancement of quantum magnetic sensor applications.

2.
Opt Express ; 32(4): 4756-4768, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439220

RESUMO

Tensor imaging can provide more comprehensive information about spatial physical properties, but it is a high-dimensional physical quantity that is difficult to observe directly. This paper proposes a fast-transform magnetic tensor imaging method based on the NV magnetic detection technique. The Euler deconvolution interprets the magnetic tensor data to obtain the target three-dimensional (3D) boundary information. Fast magnetic vector imaging was performed using optical detection of magnetic resonance (ODMR) to verify the method's feasibility. The complete tensor data was obtained based on the transformation of the vector magnetic imaging data, which was subsequently solved, and the contour information of the objective was restored. In addition, a fast magnetic moment judgment model and an angular transformation model of the observation space are developed in this paper to reduce the influence of the magnetic moment direction on the results and to help interpret the magnetic tensor data. Finally, the experiment realizes the localization, judgment of magnetic moment direction, and 3D boundary identification of a micron-sized tiny magnet with a spatial resolution of 10 µm, a model accuracy of 90.1%, and a magnetic moment direction error of 4.2°.

3.
ACS Biomater Sci Eng ; 9(11): 6309-6321, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37919884

RESUMO

Neural tissue engineering is an essential strategy to repair long-segment peripheral nerve defects. Modification of the nerve conduit is an effective way to improve the local microenvironment of the injury site and facilitate nerve regeneration. However, the concurrent release of multiple growth cues that regulate the activity of Schwann cells and neurons remains a challenge. The present study involved the fabrication of a composite hydrogel, specifically methacrylate-anhydride gelatin-ciliary neurotrophic factor/insulin-like growth factor-1 (GelMA-CNTF/IGF-1), with the aim of providing a sustained release of CNTF and IGF-1. The GelMA-CNTF/IGF-1 hydrogels exhibited a swelling rate of 10.2% following a 24 h incubation in vitro. In vitro, GelMA hydrogels demonstrated a high degree of efficiency in the sustained release of CNTF and IGF-1 proteins, with a release rate of 85.9% for CNTF and 90.9% for IGF-1 shown at day 28. In addition, the GelMA-CNTF/IGF-1 composite hydrogel promoted the proliferation of Schwann cells and the production of nerve growth factor (NGF), connective tissue growth factor (CTGF), fibronectin, and laminin and also considerably promoted the axonal growth of neurons. Furthermore, GelMA-CNTF/IGF-1 hydrogels were loaded into PCL electrospun nerve conduits to repair 15 mm sciatic nerve defects in rats. In vivo studies indicated that PCL-GelMA-CNTF/IGF-1 could efficiently accelerate the regeneration of the rat sciatic nerve, promote the formation of the myelin sheath of new axons, promote the electrophysiological function of regenerated nerves, and eventually improve the recovery of motor function in rats. Overall, the PCL-GelMA-CNTF/IGF-1 scaffold presents an attractive new approach for generating an optimal therapeutic alternative for peripheral nerve restoration.


Assuntos
Fator Neurotrófico Ciliar , Fator de Crescimento Insulin-Like I , Ratos , Animais , Fator Neurotrófico Ciliar/farmacologia , Fator Neurotrófico Ciliar/uso terapêutico , Fator de Crescimento Insulin-Like I/farmacologia , Ratos Sprague-Dawley , Preparações de Ação Retardada/farmacologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia , Tecidos Suporte , Regeneração Nervosa , Hidrogéis/farmacologia
4.
Adv Sci (Weinh) ; 10(23): e2302086, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271926

RESUMO

Half-Heusler compounds with semiconducting behavior have been developed as high-performance thermoelectric materials for power generation. Many half-Heusler compounds also exhibit metallic behavior without a bandgap and thus inferior thermoelectric performance. Here, taking metallic half-Heusler MgNiSb as an example, a bandgap opening strategy is proposed by introducing the d-d orbital interactions, which enables the opening of the bandgap and the improvement of the thermoelectric performance. The width of the bandgap can be engineered by tuning the strength of the d-d orbital interactions. The conduction type and the carrier density can also be modulated in the Mg1- x Tix NiSb system. Both improved n-type and p-type thermoelectric properties are realized, which are much higher than that of the metallic MgNiSb. The proposed bandgap opening strategy can be employed to design and develop new half-Heusler semiconductors for functional and energy applications.

5.
Small ; 19(39): e2302457, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37263990

RESUMO

The recently developed defective 19-electron half-Heusler (HH) compounds, represented by Nb1- δ CoSb, possess massive intrinsic vacancies at the cation site and thus intrinsically low lattice thermal conductivity that is desirable for thermoelectric (TE) applications. Yet the TE performance of defective HHs with a maximum figure of merit (zT) <1.0 is still inferior to that of the conventional 18-electron ones. Here, a peak zT exceeding unity is obtained at 1123 K for both Nb0.7 Ta0.13 CoSb and Nb0.6 Ta0.23 CoSb, a benchmark value for defective 19-electron HHs. The improved zT results from the achievement of selective scatterings of phonons and electrons in defective Nb0.83 CoSb, using lanthanide contraction as a design factor to select alloying elements that can strongly impede the phonon propagation but weakly disturb the periodic potential. Despite the massive vacancies induced strong point defect scattering of phonons in Nb0.83 CoSb, Ta alloying is still found effective in suppressing lattice thermal conductivity while maintaining the carrier mobility almost unchanged. In comparison, V alloying significantly deteriorates the carrier transport and thus the TE performance. These results enlarge the category of high-performance HH TE materials beyond the conventional 18-electron ones and highlight the effectiveness of selective scatterings of phonons and electrons in developing TE materials even with massive vacancies.

6.
Adv Sci (Weinh) ; 10(12): e2206397, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36799534

RESUMO

Wearable thermoelectric generators (TEGs), which can convert human body heat to electricity, provide a promising solution for self-powered wearable electronics. However, their power densities still need to be improved aiming at broad practical applications. Here, a stretchable TEG that achieves comfortable wearability and outstanding output performance simultaneously is reported. When worn on the forehead at an ambient temperature of 15 °C, the stretchable TEG exhibits excellent power densities with a maximum value of 13.8 µW cm-2 under the breezeless condition, and even as high as 71.8 µW cm-2 at an air speed of 2 m s-1 , being one of the highest values for wearable TEGs. Furthermore, this study demonstrates that this stretchable TEG can effectively power a commercial light-emitting diode and stably drive an electrocardiogram module in real-time without the assistance of any additional power supply. These results highlight the great potential of these stretchable TEGs for power generation applications.

7.
ACS Nano ; 17(4): 3818-3837, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787636

RESUMO

Neural stem cells (NSCs) are considered to be prospective replacements for neuronal cell loss as a result of spinal cord injury (SCI). However, the survival and neuronal differentiation of NSCs are strongly affected by the unfavorable microenvironment induced by SCI, which critically impairs their therapeutic ability to treat SCI. Herein, a strategy to fabricate PDGF-MP hydrogel (PDGF-MPH) microspheres (PDGF-MPHM) instead of bulk hydrogels is proposed to dramatically enhance the efficiency of platelet-derived growth factor mimetic peptide (PDGF-MP) in activating its receptor. PDGF-MPHM were fabricated by a piezoelectric ceramic-driven thermal electrospray device, had an average size of 9 µm, and also had the ability to activate the PDGFRß of NSCs more effectively than PDGF-MPH. In vitro, PDGF-MPHM exerted strong neuroprotective effects by maintaining the proliferation and inhibiting the apoptosis of NSCs in the presence of myelin extracts. In vivo, PDGF-MPHM inhibited M1 macrophage infiltration and extrinsic or intrinsic cells apoptosis on the seventh day after SCI. Eight weeks after SCI, the T10 SCI treatment results showed that PDGF-MPHM + NSCs significantly promoted the survival of NSCs and neuronal differentiation, reduced lesion size, and considerably improved motor function recovery in SCI rats by stimulating axonal regeneration, synapse formation, and angiogenesis in comparison with the NSCs graft group. Therefore, our findings provide insights into the ability of PDGF-MPHM to be a promising therapeutic agent for SCI repair.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fator de Crescimento Derivado de Plaquetas/uso terapêutico , Diferenciação Celular , Microesferas , Estudos Prospectivos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Peptídeos/farmacologia , Medula Espinal/patologia
8.
Sensors (Basel) ; 22(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36236646

RESUMO

We propose a kind of fast and high-precision alignment algorithm based on the ESO technology. Firstly, in order to solve the problems of rapid, high-accuracy, and anti-interference alignment on the moving pedestal in the north-seeker, the ESO technology in control theory is introduced to improve the traditional Kalman fine-alignment model. This method includes two stages: the coarse alignment in the inertial frame and fine alignment based on the ESO technology. By utilizing the ESO technology, the convergence speed of the heading angle can be greatly accelerated. The advantages of this method are high-accuracy, fast-convergence, strong ability of anti-interference, and short time-cost (no need of KF recursive calculation). Then, the algorithm model, calculation process, and the setting initial-values of the filter are shown. Finally, taking the shipborne north-finder based on the FOG (fiber-optic gyroscope) as the investigated subject, the test on the moving ship is carried out. The results of first off-line simulation show that the misalignment angle of the heading angle of the proposed (traditional) method is ≤2.1' (1.8') after 5.5 (10) minutes of alignment. The results of second off-line simulation indicate that the misalignment angle of the heading angle of the proposed (traditional) method is ≤4.8' (14.2') after 5.5 (10) minutes of alignment. The simulations are based on the ship-running experimental data. The measurement precisions of Doppler velocity log (DVL) are different in these two experiments.

9.
Phys Chem Chem Phys ; 21(5): 2365-2371, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30666332

RESUMO

Fluorescent proteins (FPs) have become fundamental tools for live cell imaging. Most FPs currently used are members of the green fluorescent protein super-family, but new fluorophores such as bilin-FPs are being developed and optimized. In particular, the UnaG FP incorporates bilirubin (BR) as a chromophore, enhancing its fluorescence quantum yield by three orders of magnitude relative to that in solution. To investigate the mechanism of this dramatic enhancement and provide a basis for further engineering of UnaG and other tetrapyrrole-based fluorophores, we performed picosecond fluorescence and femtosecond transient absorption measurements of BR bound to UnaG and its N57A site-directed mutant. The dynamics of wt-UnaG, which has a fluorescence QY of 0.51, are largely homogeneous, showing an excited state relaxation of ∼200 ps, and a 2.2 ns excited-state lifetime decay with a kinetic isotope effect (KIE) of 1.1 for D2O vs. H2O buffer. In contrast, for UnaG N57A (fluorescence QY 0.01) the results show a large spectral inhomogeneity with excited state decay timescales of 47 and 200 ps and a KIE of 1.4. The non-radiative deactivation of the excited state is limited by proton transfer. The loss of direct hydrogen bonds to the endo-vinyl dipyrrinone moiety of BR leads to high flexibility and structural heterogeneity of UnaG N57A, as seen in the X-ray crystal structure.


Assuntos
Bilirrubina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Bilirrubina/química , Bilirrubina/efeitos da radiação , Sítios de Ligação , Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/efeitos da radiação , Ligação de Hidrogênio , Luz , Mutação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...